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Abstract

A smart structural model is developed to analytically determine the transient response of arbitrary
structures with piezoelectric materials and attached electrical circuitry. The equations of motion are
formulated using a coupled piezoelectric formulation solving for strain and electric charge. The composite
host structure is modelled using a refined higher-order laminate theory and additional degrees of freedom
are then added to describe any attached electrical circuitry. The developed model results in a general
framework that can be useful in solving a wide variety of coupled piezoelectric-mechanical problems. A
comparison is made with classical plate theory and uncoupled piezoelectric modelling techniques to illustrate
the importance of proper modelling in order to accurately estimate sensor response during transient loading
of adaptive structures. The model is compared with experimental results, showing the model to be capable of
capturing several effects not possible with traditional smart structures modelling techniques.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Piezoelectric materials such as lead zirconate titanate (PZT) are becoming more widely used in
conjunction with control systems to damp out vibrations in structures. These ‘‘smart’’ structures
use PZTs to both senses, strain in the structure and to create localized forces to counter the
vibration. Strain present in the piezoelectric sensor induces an electric field in the material and
sensing is accomplished by either measuring the voltage or the charge output of the sensor
electrodes. To use the PZT as an actuator, a voltage can be applied to the electrodes inducing an
electric field, and in turn, a stress within the PZT.
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Analysis of smart structures using piezoelectric materials as either sensors or actuators has
traditionally been performed using uncoupled models [1,2]. Uncoupled models make the
assumption that the electric field within the piezoelectric material is constant and proportional to
the ratio of electrode voltage to PZT thickness. Having made this assumption, the strain induced
by an actuator is modelled with a single uncoupled equation and the charge output of a sensor is
described by another uncoupled equation. This makes analysis of a smart structure relatively
simple, but this method has its limitations. The mechanical and electric response of a piezoelectric
device is in reality described by a pair of coupled equations [3] and cannot be accurately modelled
if treated independently. It is therefore necessary to simultaneously solve for both the electric
response as well as the mechanical response regardless of whether the PZT is being used as a
sensor or actuator. Also, the uncoupled model is not capable of taking into consideration any
electrical circuitry connected to the piezoelectric device. This has been recognized in some specific
applications and coupled equations have been used to model passive damping circuits [4,5] and
develop self-sensing actuators [6]. Only recently have the coupled equations been simultaneously
used for general-purpose analysis of adaptive structures [7–9].

In general, the errors that result from using uncoupled models, as opposed to coupled ones, are
relatively moderate. However, there are some cases in which very large differences exist when
using the two approaches. One such case is for high frequency vibrations or thick piezoelectric
material. The objective of this work is to demonstrate the importance of proper modelling
methods when analyzing high frequency vibration in smart composite structures and to show a
comparison between the results predicted by uncoupled and coupled approaches.

2. Mathematical theory

The model developed in this paper is based on a coupled piezoelectric-mechanical formulation,
which allows accurate prediction of both the mechanical and the electrical response of a
piezoelectric structural system. A higher-order theory is used to model the transverse shear effects,
which are critical in anisotropic laminates of arbitrary thickness. A non-linear time integration
technique is used to predict the transient response of the structure. This time integration method is
based on the Newmark-beta method with Newton–Raphson (NR) iteration. The procedure is
implemented using a finite element solution technique.

A recently developed two-way coupled piezoelectric-mechanical theory [9] is used to model
composite plates with piezoelectric actuators. The construction of a model for smart composite
laminates starts with the formulation of the constitutive relations. Traditionally these are
expressed as a function of the components of strain (eij) and electric field (Ei) as follows

sij ¼ cE
ijklekl � ekijEk; Di ¼ eiklekl þ wS

ikEk; ð1; 2Þ

where sij and Di are the components of the mechanical stress and the electrical displacement, and
cE

ijkl ; eijk; and wS
ik are the elastic, piezoelectric, and dielectric permittivity constants, respectively. It

should be noted that the elastic constants used correspond to the zero electric field values (PZT is
shorted out) and the dielectric permittivities correspond the zero strain values (clamped). Eq. (1) is
often referred to as the converse effect and Eq. (2) is known as the direct effect. These equations
are traditionally used due to the ease with which piezoelectric materials can be modelled as either
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actuators or sensors. Most formulations make the assumption, based on the geometry of thin,
electroded piezoelectrics, that the electric field is constant through the thickness of the material
and zero within the plane of the piezoelectric device. However, if the strain is not constant through
the thickness of the piezoelectric material, such as in the case of bending or transverse shear, then
this method results in electric displacement varying through the thickness. This also implies
differing amounts of charge on the upper and lower electrodes, which is a violation of the
conservation of charge principle. This has been resolved by making the electric potential, and in
turn the electric field, high order functions through the thickness co-ordinate to match the
displacement and strain fields in the structure. However, such an approach leads to additional
degrees of freedom to describe the electric potential. Another drawback of such an approach is
that the resulting system matrices in finite element implementation are not symmetric. This results
in a sizable increase in the computational effort required to solve the system of equations.

To address these issues, a different approach is used, in which Eqs. (1) and (2) are reformulated
in terms of the mechanical strain and the electric displacement as

sij ¼ cD
ijklekl � hkijDk; Ei ¼ �hiklekl þ bS

ikDk; ð3; 4Þ

where cD
ijkl ; eijk; and bS

ik are the open circuit elastic and zero strain dielectric constants, respectively.
The coefficient hijk now represents the coupling between the strain and the electric displacement.
In matrix form these are written as

s ¼ CDe� hD; E ¼ �hTeþ bSD: ð5; 6Þ

Using this formulation, the electric displacement (D) can be taken as constant through the
thickness of the PZT, thus ensuring conservation of charge on each of the electrodes.

The equations of motion can be formulated using a variational approach and Hamilton’s
Principle [3]. The variational principle between times to and t; for the piezoelectric body of volume
V can be written as

dP ¼ 0 ¼
Z t

to

Z
V

d 1
2
r’uT ’u

� �
� dHðe;DÞ

� �
dV dt þ

Z t

to

dW dt; ð7Þ

where the first term represents the kinetic energy, the second term the electric enthalpy, and dW is
the total virtual work done on the structure. The terms u and r refer to the mechanical
displacement and density, respectively. The electric enthalpy is given by

Hðe;DÞ ¼ 1
2
eTCDe� eThDþ 1

2
DTbSD: ð8Þ

The work done by body forces (fB), surface tractions (fS), and electrical potential (f) applied to
the surface of the piezoelectric material can be expressed by

dW ¼
Z

V

duTfB dV þ
Z

S

duTfSdS þ
Z

S

dDTf dS: ð9Þ

Eqs. (7–9) provide the equations of motion for the piezoelectric body. To solve them,
assumptions must be made concerning the nature of the mechanical strain and the electrical
displacement. First, it is assumed that the piezoelectric material is oriented with its polarization
axis normal to the plane of the plate and that the PZT has electrodes covering its upper and lower
surfaces. This is the usual geometry for transversely operating piezoelectric actuators and sensors
which are bonded to the surface or embedded in plate structures. For this case, the electric
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displacement becomes zero along the two in-plane directions. The out-of-plane electric
displacement can then be discretized over the surface of the piezoelectric device using finite
elements.

A refined higher-order laminate theory [10] is used to model the mechanical displacement field.
The laminate is assumed to be a plate structure composed of an arbitrary number of orthotropic
lamina arranged with varying orientations. The co-ordinate system for the plate is taken to be
with the x2y plane parallel to the plane of the plate and the z co-ordinate normal to the plane of
the plate measured from the center. The refined higher-order theory assumes a parabolic
distribution of transverse shear strain, thus providing accurate estimation of transverse shear
stresses for moderately thick laminates with little increase in computational effort. The theory
starts with a general third order displacement field and is simplified by imposing the stress free
boundary conditions on the free surfaces. Since the laminate is orthotropic, this implies that the
transverse shear strains are zero. The refined displacement field now takes the following form

u1 ¼ u þ z cx �
@w

@x

� �
�

4z3

3h2
cx; u2 ¼ v þ z cy �

@w

@y

� �
�

4z3

3h2
cy; u3 ¼ w; ð10a2cÞ

where u; v; and w are the displacements of the midplane, and the parameters cx and cy are the
rotations of the normal at z ¼ 0 about the y and x axes, respectively. Note that u; v; w; cx and cy

are all functions of the x and y co-ordinates only. The variable z represents the location with
respect to the midplane of the plate, and h is the total plate thickness. The coupled piezoelectric-
mechanical theory can be developed using other plate theories, but the chosen plate model affects
the constraints imposed on the delamination boundaries developed later in this paper.

By using the above equations and the finite element method, the governing equations can be
written in matrix form as

Mu 0

0 0

" #
.ue

.D

( )
þ

Cu 0

0 0

" #
’ue

’D

( )
þ

Kuu KuD

KDu KDD

" #
ue

D

( )
¼

Fu

FD

( )
; ð11Þ

where ue is the nodal displacements, D is the vector of the PZT nodal electrical displacements. The
matrixMu is the structural mass matrix and Cu is the structural damping matrix. The matrix Kuu is
the mechanical stiffness matrix, KDD is the electrical stiffness matrix, and KuD and KDu are the
stiffness matrices due to piezoelectric-mechanical coupling. The vectors Fu and FD are the force
vectors due to mechanical and electrical loading. To incorporate structural damping into the
equations, a structural damping matrix Cu is added. The nature of the damping matrix can be
chosen to meet the needs of the user.

The absence of any electrical inertia or damping terms in Eq. (11) is a result of only considering
the mechanical aspects of the smart structure. When considering an integrated smart structural
system as a whole, additional terms must be added for electrical components in the system. For a
simple LRC circuit, the variational energy can be calculated based on the charge flow in the
circuit, q; as follows:

dPq ¼ d
1

2
L ’q2

� �
� dqR ’q � d

1

2C
q2

� �
þ Vdq; ð12Þ

where L; R; C and V are the inductance, resistance, capacitance and applied voltage. The
importance of formulating Hamilton’s Principle in terms of the charge, rather than electric field or
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potential, now becomes apparent. If the equations of motion for any electrical system attached to
the smart structure can be formulated in the following form

Mq .qe þ Cq ’qe þ Kqqe ¼ Fq: ð13Þ

These equations can then be combined with Eq. (11). However, Eq. (11) is formulated in terms of
electric displacement (charge flow per unit area) as opposed to total charge flow (qe) in the circuit.
These two quantities can be related by integration of the electric displacement over the surface
area of the piezoelectric device as

qi ¼
Z

S

Nq dS

� �
Die or qe ¼ AqDe: ð14Þ

Since the finite element method is used, the integration of the shape functions, Nq; leads to the
formation of a simple matrix operator, Aq; which relates nodal electric displacement to total
charge flow. Combining Eqs. (24) and (26), the resulting coupled electrical-mechanical system
equations are obtained:

Mu 0

0 AT
qMqAq

" #
.ue

.De

( )
þ

Cu 0

0 AT
qCqAq

" #
’ue

’De

( )

þ
Kuu KuD

KDu KDD þ AT
qKqAq

" #
ue

De

( )
¼

Fu

FD

( )
; ð15Þ

where qe includes not only the charge associated with the piezoelectric device, but also the
electrical system.

To model a particular sensor configuration the electrical circuit must be modelled or
appropriate electrical boundary conditions must be applied. If sensor charge flow is being
measured, then the voltage is specified as zero. If sensor voltage is being measured, then the net
charge flow, Eq. (14), is specified as zero.

The non-linear transient analysis is conducted using Newmark-beta method with NR iteration
[11]. This results in a time integration method that can be iterated at each time step to provide
accurate prediction of the transient response of the system.

3. Piezoelectric modelling results

The developed model is used to calculate the response of a composite plate with surface bonded
actuators subjected to impulse loading. The objective is to demonstrate the nature and magnitude
of errors that exist when simpler approaches are used. First, a comparison is made between the
response predicted by the refined higher-order laminate theory and the classical plate theory. Then
the difference between the coupled piezoelectric-mechanical model and the uncoupled model is
examined.

The plate to be modelled is assumed to be clamped at one end with a cantilevered section
31.1 cm long by 5.1 cm wide. The plate is modelled as a graphite-epoxy laminate with 16 plies of
0.137mm ply thickness. A variety of ply stacking sequences are considered, including cross-ply as
well as balanced and unbalanced angle-ply lay-ups. A piezoelectric patch is assumed to be bonded
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to the upper surface of the plate as shown in Fig. 1. The patch is modelled as PZT-5H with a
thickness of 0.25mm. The material properties used for the graphite-epoxy and PZT are listed in
Table 1.

3.1. Higher-order versus classical plate theory

First, a comparison is made between models using the refined higher-order laminate theory and
the classical plate theory. By including transverse shear stress, the refined higher-order theory has
been shown to result in a model with lower natural frequencies than those predicted by the
classical plate theory [10]. This reduction in natural frequencies is due to the fact that during
vibration the plate undergoes not only pure bending, but also deformation in the form of out-of-
plane shear. The bending modes are all composed of both forms of deformation and thus, models
that do not include both are too stiff. The effects are not only more significant for thicker
laminates, but also create larger changes in out-of-plane modes with higher natural frequencies.

A laminate stacking sequence of ½0�; 90��4s is considered first, with the PZT modelled as being
open circuited. This laminate has a ratio of plate length to thickness of 142, making this a
relatively thin plate. The plate is modelled with the refined higher-order laminate theory, which
includes the effects of transverse shear, as well as with the classical plate theory, which neglect
transverse shear. All other aspects of the modelling are identical in both cases. The plate is

31.1 cm
Fixed 
end 

1.83 cm

5.1 cm2.06 cm

Tip loads and 
measurements applied 1cm4.60 cm

PZT 

Fig. 1. Cantilever plate layout.

Table 1

List of material properties used

Material property Graphite-epoxy PZT-5H

E1 (GPa) 372.0 60.6

E2 (GPa) 4.12 60.6

n12 0.275 0.29

n23 0.42 0.48

G12 (GPa) 3.99 23.49

G23 (GPa) 3.6 22.99

r (kg/m3) 1788.5 7500

d31 and d32 (nm/V) n/a �0.274

d24 and d15 (nm/V) n/a 0.741

wT33 (nF/m) n/a 30.1

R.P. Thornburgh et al. / Journal of Sound and Vibration 274 (2004) 53–7258



simulated as being subjected to a 5-N, 1 ms impulse point load at the tip. The analysis is performed
for both cases with a 1ms time step. Fig. 2 shows the resulting tip displacement obtained by using
the two models. The difference between the higher-order theory and the classical theory is modest,
but noticeable during the short time interval analyzed, even for this thin laminate. The electrical
response of the system can be seen in Fig. 3, which shows the predicted voltage output from the
PZT sensor during the impulse loading. A much more noticeable difference in voltage output is
observed between the two plate theories in comparison to the modest difference in tip
displacement. Although the shape of the response is very similar, the magnitude of the signal
differs significantly. It is difficult to quantify the effect of the plate theory on the electrical
response. The change in the natural frequencies of the plate contributes to the change in sensor
output, but also transverse shear itself generates an internal electrical potential within the
piezoelectric device due to the existence of the d24 and d15 piezoelectric constants seen in Table 1.

Next, the same plate is analyzed for a 1N, 5 ms impulse point load at the tip. The time step for
the transient analysis is 5ms, so that a longer time segment could be examined. The tip
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displacement for the higher-order and classical plate theories is shown in Fig. 4 and the sensor
output is shown in Fig. 5. When a longer time step is used, 5 ms as opposed to 1ms, the differences
between the two theories are much less significant for the thin plate, because the transverse shear
has less influence on the lower order modes. Note that in this case the charge flow from the PZT is
estimated for sensor output. It can be seen that the difference in the way transverse shear is
modelled by the two-plate theories affects sensor charge flow to a greater degree than tip
displacement.

An increase in plate thickness increases the influence of transverse shear on the response of the
plate, and thus, the difference in the response predicted by the higher-order theory and the
classical plate theory should increase as well. This is shown in Fig. 6, which depicts the tip
response for a ½0�5 ; 90

�
5 �4s laminate. The ratio of plate length to thickness is 28.4 for this case,

making this a moderately thick plate. The impulse length and time step used in this case are both
1ms. By increasing plate thickness, difference in natural frequencies predicted by the classical plate
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theory and the higher-order plate theory become greater, resulting in sizable differences in plate
deflections.

3.2. Coupled versus uncoupled piezoelectric theory

Next a comparison is made between the coupled and the uncoupled piezoelectric models. The
plate with ½0�; 90��4s stacking sequence is considered. The plate is simulated being subjected to a
1N, 5 ms impulse point load at the tip, and a 5ms time step is used for the transient analysis. The
PZT is assumed to be open circuited and voltage is computed for sensor output. The response is
calculated using both the coupled theory presented in this work as well as the traditional
uncoupled approach. The resulting tip displacement is shown in Fig. 7 for both approaches. Only
very slight differences between the two models are observed in this case. This is due to the
relatively small size of the PZT patch and its limited contribution to the overall plate stiffness.
Though the difference might be expected to be larger for thicker PZT patches, the displacement is
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more greatly influenced by the plate theory as opposed to the piezoelectric model. Fig. 8 shows the
voltage output of the sensor for both cases. Here it can be seen that the coupled theory predicts
dramatically different results from the uncoupled approach, even though the displacements are
shown to be similar. Fig. 9 presents the output if the charge flow from the PZT is instead
measured. Again the coupled theory predictions greatly differ from the uncoupled approach.

The reason for the large differences in the electrical response is due to the fact that the
uncoupled theory assumes that the electric field is constant over the entire area of the PZT.
During impulse loading high frequency bending waves travel across the length of the plate, as
shown in Fig. 10. As these high frequency waves move across the PZT, the piezoelectric material
is subjected to areas of local compression and tension. As a result, the electric displacement is
positive in some local areas and negative in others as shown in Fig. 11. The net charge output is
thereby reduced since charge merely flows from one region of the patch to another. When the PZT
is open circuited, the charge flow within the PZT still occurs making the voltage output very
sensitive to local strain. As shown in Fig. 12, the strains at the two ends of the PZT are very
dissimilar during the impulse loading. Thus, there exists a continuously changing strain gradient

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0 5 10 15 20 25

V
o

lt
a

g
e

 (
V

)

Time (ms)

Fig. 8. Sensor output for ½0�; 90��4s laminate under impulse loading; uncoupled model ( ), and coupled model

(——).

-4.E-09

-3.E-09

-2.E-09

-1.E-09

0.E+00

1.E-09

2.E-09

3.E-09

4.E-09

5.E-09

0 5 10 15 20 25

C
h

ar
g

e 
F

lo
w

 (C
o

u
l)

Time (ms)

Fig. 9. Sensor charge flow for ½0�; 90��4s laminate under impulse loading; uncoupled model ( ), and coupled model

(——).

R.P. Thornburgh et al. / Journal of Sound and Vibration 274 (2004) 53–7262



Axial 
length (m) 

D
is

p
la

ce
m

en
t 

(µµ
m

) 

Tip Force

Clamped 
edge 

Width (m) 

Fig. 10. Plate displacement at t ¼ 73:95 ms during impulse tip loading.

0.02
0.025

0.03
0.035

0.04
0.045

0.02
0.025

0.03
0.035

0.04
0.045

0.05
0.055

0.06

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Axial
length (m)

E
le

ct
ri

c 
d

is
p

la
ce

m
en

t
(µ

C
o

u
l/m

2 )

Width (m)

Fig. 11. Electric displacement over the piezoelectric sensor at t ¼ 60:45ms during impulse loading.

-1.5E-07

-1.0E-07

-5.0E-08

0.0E+00

5.0E-08

1.0E-07

0 5 10 15 20 25

S
tr

a
in

 a
t 

s
u

rf
a

c
e

Time (ms)

Fig. 12. Longitudinal strain at the plate surface on ends of the PZT patch; edge nearest to the tip ( ) and edge

closest to the root (——).

R.P. Thornburgh et al. / Journal of Sound and Vibration 274 (2004) 53–72 63



across the PZT patch, which leads to the difference in results predicted by the coupled and
uncoupled models. The above results are for cross-ply laminates, but similar results are obtained
for angle-ply laminates.

4. Experimental comparison

To validate the model and verify the conclusions made from comparison of the coupled theory
with the uncoupled approach, a set of experiments was performed. The objective of these
experiments was to provide a set of transient sensor outputs for a well-defined model and compare
these directly with the results predicted by the developed model.

The test specimen used was a cantilevered plate with two piezoelectric patches bonded to the
surface. The plate was made from 3.18mm thick Aluminum 2024-T3 and the plate geometry is
that shown in Fig. 13. The small piezoelectric patch at the root was a custom ACX (Active
Control eXperts, Inc.) actuator with wafer dimensions of 1.27 cm length, 0.635 cm width and
0.25mm thickness. The large piezoelectric patch was an ACX QP-10N actuator with wafer
dimensions of 4.597 cm length, 2.057 cm width and 0.25mm thickness. Both devices were made of
PZT-5A with a polyamide coating. The material properties for the aluminum and the piezoelectric
devices are shown in Table 2.

The small patch at the root was used as an actuator to induce vibration in the plate, while the
larger patch was used as a sensor. To simulate an impulse loading in the plate, a single cycle of
high frequency voltage was applied to the actuator. The single cycle voltage was generated by a
function generator set to operate in burst mode and create a 3.75V signal once every 2 s. The
input voltage was then amplified to a 75V-peak signal that was sent to the actuator. This signal is
illustrated in Fig. 14.

The sensor output was measured using two different methods. First, the sensor was connected
to a charge amplifier that converted the charge flow of the device into a voltage signal that was
measured and analyzed using an oscilloscope. This method allowed measurement of the charge

Fixed 
end 

Sensor

Actuator
PZT 

PZT 

2.93 cm

35.54 cm

5.241 cm
10.00 cm

Charge amplifier 
Amplifier 

trigger

Function 
generator

Oscilloscope

Fig. 13. Plate geometry for transient analysis.
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output of the piezoelectric device for comparison with the developed model. Next, the sensor was
connected directly to the oscilloscope and the voltage output was measured.

Sensor output was measured for a range of input frequencies. The frequency of the single cycle
voltage input allowed control of the duration of the impulse. Higher frequency inputs acted like
short duration impulse loads and excited high frequency responses from the system. This method
proved to be much more controlled than mechanical impulse loads and the output signals for the
impulses were very repeatable. To minimize any effects of noise and deviation between individual
impulses, the oscilloscope was set to provide an averaged output using 16 impulse signals.

The charge output for 10, 25 and 50 kHz input frequencies is shown in Fig. 15. The important
aspect to be noted from these results is that the overall shape of the output is the same for all three
frequencies. The effect of electrical inductance discussed above can be clearly seen, in that it filters
high frequency components out of the sensor output. Fig. 16 shows the voltage output for 1, 10
and 25 kHz input frequencies. It is clear by comparing the sensor charge flow in Fig. 15b to the
sensor voltage in Fig. 16c that the voltage measurement is more sensitive to high frequency
vibration and less affected by the electrical inductance. This is reasonable since although
the oscilloscope is not a true open circuit it has a 1MO internal resistance that limits the
electrical system to very small net charge flows. Less charge flow in turn implies less effect from
inductance, but charge flow within the piezoelectric device during high frequency vibration is still
affected.

Voltage (V)

Time (µs)

Fig. 14. Input voltage used to simulate impulse loading.

Table 2

Material properties for experimental comparison

Material property Aluminum PZT

E (GPa) 68.5 60.6

n 0.326 0.29

G (GPa) 25.83 23.49

r (kg/m3) 2784 7500

d31; d32 (m/V) n/a �274	 10�12

d24; d15 (m/V) n/a 741	 10�12

eS
3 (F/m) n/a 3.01	 10�9
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Fig. 15. Sensor charge flow for input frequencies of (a) 10 kHz, (b) 25 kHz and (c) 50 kHz.
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The developed analysis was used to model the system described above. A finite element mesh
with 85 by 9 elements was used for the plate resulting in 860 nodes. The system had 6020
mechanical degrees of freedom, 8 nodal electrical displacements for the small actuator and 48
nodal electrical displacements for the sensor. The material properties listed in Table 2 are used to
model the system. First, the natural frequencies of the test specimen were compared with those
predicted by the developed model. The natural frequencies of the out-of-plane vibration modes
for the case of the sensor being open-circuited are shown in Table 3. There is good comparison for
both the bending and twisting modes. However, it should be noted that above 6 kHz mixed mode
behavior was mostly observed, and there was less clear correlation between the model and the
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Fig. 16. Sensor voltage for input frequencies of (a) 1 kHz, (b) 10 kHz and (c) 25 kHz.
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experiment. To illustrate the influence of the electrical circuit vibration of the system, the natural
frequencies were also computed for the case of the sensor being electrically shorted and are shown
in Table 4. When the electrodes of the sensor are shorted, the piezoelectric device cannot store as
much electrical energy. This causes the piezoelectric sensor to be less mechanically stiff, thus
lowering the natural frequencies of the system. This effect is observed in both the experimental
data and the results of the model, however uncoupled approaches are not able to capture this
effect.

Overall the model showed a reasonably good ability to predict the transient response of the
experimental system. The sensor charge flow predicted by the model for the 25 kHz input
frequency is shown in Fig. 17 for both the coupled and uncoupled models. As discussed above, the
uncoupled model neglects the electrical inductance and resistance in the electrical circuit and in
the piezoelectric devices. This results in large amounts of high frequency content in the predicted
response compared to the uncoupled model and the experimental data. Although this can be

Table 3

Vibrational natural frequencies with the sensor open-circuited

Mode Experiment Model

Bending 1 20.170 20.326

Bending 2 127.98 128.68

Twisting 1 267.43 267.94

Bending 3 360.10 360.48

Bending 4 702.34 703.58

Twisting 2 821.72 821.40

Bending 5 1164.5 1168.7

Twisting 3 1379.8 1381.7

Bending 6 1744.7 1750.2

Twisting 4 2000.0 2004.5

Bending 7 2434.0 2444.3

Twisting 5 2677.8 2680.5

Bending 8 3235.9 3261.2

Twisting 6 3403.1 3405.9

Bending 9 4114.5 4187.7

Twisting 7 4254.1 4229.7

Bending 10 5236.4 5223.3

Table 4

Vibrational natural frequencies with the sensor electrically shorted

Mode Experiment Model

Bending 1 20.147 20.323

Bending 2 127.56 128.45

Twisting 1 267.13 267.94

Bending 3 359.51 359.63

Bending 4 701.09 703.56

Twisting 2 821.36 821.39
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observed in Fig. 17, a more valuable comparison can be made by examining the response in the
frequency domain. Fig. 18 shows the frequency content of the response for the coupled and
uncoupled approaches in comparison to the experimental data. Both models correlate reasonably
well at low frequencies, but the uncoupled model has a large amount of high frequency content
above 20 kHz.

The variations observed are not unreasonable considering the difficulties associated with
accurate modelling of high frequency structural dynamics. The deviation between the
experimental data and the coupled model results from a number of factors. One is a limitation
of the finite element method and the mesh size used in this model. Another is the classical damping
model used for the mechanical damping of the system. Also, since the coupled model includes the
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Fig. 17. Sensor charge flow for 25 kHz input frequency from (a) experimental measurement, (b) coupled model and

(c) uncoupled model.
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electrical effects, it is necessary to quantify the electrical resistance and inductance in the electrical
circuit and the piezoelectric devices. In this work they were approximated from manufactures’
data and simple electrical theory, but it may be necessary to develop more rigorous methods to
characterize the electrical aspects of the system.

Next sensor voltage is calculated using the developed model. The sensor voltages predicted by
the model for 1 and 10 kHz input frequencies are shown in Figs. 19 and 20. The output is similar
to the experimental data, but is less accurate than the predicted charge flow. The reason for this
difference is again the difficulty in accurately characterizing the electrical system. The oscilloscope
used to measure the voltage experimentally is not an ideal voltage-measuring device. The actual
circuit measures the voltage across a large resistor and the circuit has a small amount of charge
flow, contrary to the zero net charge flow assumed by the piezoelectric boundary conditions. Also,
the charge flow within the PZT becomes extremely important in determining the output voltage.
A more detailed characterization of the internal inductance and resistance of the piezoelectric
device and voltage measuring circuit must be used to accurately model the voltage response of an
adaptive structure.
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5. Conclusions

A new approach has been developed for modelling the transient response of composite
laminates with piezoelectric sensors and actuators. The mathematical model uses a coupled
piezoelectric-mechanical theory that accurately captures both electrical and mechanical
characteristics of adaptive structures. Parametric studies were performed to assess the difference
in results predicted between the refined higher-order laminate theory and the classical plate
theory, as well as between the coupled and uncoupled piezoelectric models. Comparison with
experimental data showed that the developed model gives good results, although the results are
sensitive to the internal inductance of the piezoelectric device. The following conclusions were
made from the present study

(1) For thin plates, the differences in mechanical displacements predicted by the higher-order and
the classical plate theories are significant only when the time step is sufficiently small to
capture very high frequency modes. The differences in sensor output are more significant in all
cases.

(2) For thicker plates, significant differences are observed in both mechanical displacements and
sensor output predicted by the higher-order and the classical plate theories.

(3) Although moderate differences are observed in the predictions of mechanical displacements,
larger differences are observed for both charge and voltage measurements, predicted by the
coupled and uncoupled models.

(4) The assumption of constant electric field over the entire PZT area in the uncoupled theory
leads to inaccuracies in modelling the effect of high frequency vibrations that create both
areas of local compression and local tension within the PZT patch.

Acknowledgements

This research was supported by the Air Force Office of Scientific Research, Technical monitor,
Daniel Segalman.

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
V

o
lt

ag
e 

(V
)

Time (ms)

Fig. 20. Predicted response for 10 kHz input frequency; experimental (——) and model (- - - - -).

R.P. Thornburgh et al. / Journal of Sound and Vibration 274 (2004) 53–72 71



References

[1] E.F. Crawley, Use of piezoelectric actuators as elements of intelligent structures, American Institute of Aeronautics

and Astronautics Journal 25 (1987) 1373–1385.

[2] D.T. Detwiler, M.H. Shen, V.B. Venkayya, Finite element analysis of laminated composite structures containing

distributed piezoelectric actuators and sensors, Finite Elements in Analysis and Design 20 (1995) 87–100.

[3] H.F. Tiersten, Hamilton’s principle for linear piezoelectric media, IEEE Proceedings 55 (1967) 1523–1524.

[4] N.W. Hagood, A. Von Flotow, Damping of structural vibrations with piezoelectric materials and passive electrical

networks, Journal of Sound and Vibration 146 (1991) 243–268.

[5] S.Y. Wu, Piezoelectric shunts with a parallel R–L circuit for structural damping and vibration control, Smart

Structures and Materials 1996: Passive Damping, Proceedings of the International Society for Optical Engineering

2720 (1996) 259–269.

[6] E.H. Anderson, N.W. Hagood, Simultaneous piezoelectric sensing/actuation: analysis and application to

controlled structures, Journal of Sound and Vibration 174 (1994) 617–639.

[7] J.A. Mitchell, J.N. Reddy, A refined hybrid plate theory for composite laminates with piezoelectric laminae,

International Journal of Solids Structure 32 (1995) 2345–2367.

[8] A. Chattopadhyay, J. Li, H. Gu, A coupled thermo-piezoelectric-mechanical model for smart composite laminates,

American Institute of Aeronautics and Astronautics Journal 37 (1999) 1633–1638.

[9] R.P. Thornburgh, A. Chattopadhyay, Simultaneous modeling of mechanical and electrical response of smart

composite structures, American Institute of Aeronautics and Astronautics Journal 40 (2002) 1603–1610.

[10] J.N. Reddy, A simple higher-order theory for laminated composite plates, Journal of Applied Mechanics 51 (1984)

745–746.

[11] K.J. Bathe, Finite Element Procedures, Prentice Hall, Englewood Cliffs, NJ, 1996.

R.P. Thornburgh et al. / Journal of Sound and Vibration 274 (2004) 53–7272


	Transient vibration of smart structures using a coupled piezoelectric-mechanical theory
	Introduction
	Mathematical theory
	Piezoelectric modelling results
	Higher-order versus classical plate theory
	Coupled versus uncoupled piezoelectric theory

	Experimental comparison
	Conclusions
	Acknowledgements
	References


